
1

CS 188: Artificial Intelligence

Spring 2010

Lecture 4: A* wrap-up + Constraint

Satisfaction

1/28/2010

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein

Announcements

� Project 0 (Python tutorial) is due today

� If you don’t have a class account yet, pick one up

after lecture

� Written 1 (Search) is due today

� Project 1 (Search) is out and due next week

Thursday

� Section/Lecture

2

Recap: Search

� Search problem:
� States (configurations of the world)

� Successor function: a function from states to
lists of (state, action, cost) triples; drawn as a graph

� Start state and goal test

General Tree Search

� Important ideas:
� Fringe

� Expansion

� Exploration strategy

� Main question: which fringe nodes to explore?

Detailed pseudocode

is in the book!

3

A* Review

� A* uses both backward costs g and

forward estimate h: f(n) = g(n) + h(n)

� A* tree search is optimal with admissible

heuristics (optimistic future cost estimates)

� Heuristic design is key: relaxed problems

can help

Admissible Heuristics

� A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

� Example:

� Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

15

4

Optimality of A*: Blocking

…Notation:

� g(n) = cost to node n

� h(n) = estimated cost from n

to the nearest goal (heuristic)

� f(n) = g(n) + h(n) =

estimated total cost via n

� G*: a lowest cost goal node

� G: another goal node

Optimality of A*: Blocking

Proof:

� What could go wrong?

� We’d have to have to pop a

suboptimal goal G off the

fringe before G*

� This can’t happen:

� Imagine a suboptimal

goal G is on the queue

� Some node n which is a

subpath of G* must also

be on the fringe (why?)

� n will be popped before G

…

5

Tree Search: Extra Work!

� Failure to detect repeated states can cause
exponentially more work. Why?

Graph Search

� Very simple fix: never expand a state twice

� Can this wreck completeness? Optimality?

6

Optimality of A* Graph Search

Proof:

� New possible problem: nodes on path to

G* that would have been in queue aren’t,

because some worse n’ for the same

state as some n was dequeued and

expanded first (disaster!)

� Take the highest such n in tree

� Let p be the ancestor which was on the

queue when n’ was expanded

� Assume f(p) < f(n)

� f(n) < f(n’) because n’ is suboptimal

� p would have been expanded before n’

� Contradiction!

Consistency

� Wait, how do we know parents have better f-values than
their successors?

� Couldn’t we pop some node n, and find its child n’ to
have lower f value?

� YES:

� What can we require to prevent these inversions?

� Consistency:

� Real cost must always exceed reduction in heuristic

A

B

G

3
h = 0

h = 10

g = 10

7

A* Graph Search Gone Wrong

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1) C (3+1)

G (6+0)

S

A

B

C

G

State space graph Search tree

C is already in

the closed-list,

hence not

placed in the

priority queue

Consistency

3

A

C

G

h=4

h=1
1

The story on Consistency:

• Definition:

cost(A to C) + h(C) ≥ h(A)

• Consequence in search tree:

Two nodes along a path: NA, NC

g(NC) = g(NA) + cost(A to C)

g(NC) + h(C) ≥ g(NA) + h(A)

• The f value along a path never

decreases

• Non-decreasing f means you’re

optimal to every state (not just goals)

8

Optimality Summary
� Tree search:

� A* optimal if heuristic is admissible (and non-negative)

� Uniform Cost Search is a special case (h = 0)

� Graph search:
� A* optimal if heuristic is consistent

� UCS optimal (h = 0 is consistent)

� Consistency implies admissibility
� Challenge:Try to prove this.

� Hint: try to prove the equivalent statement not admissible implies not
consistent

� In general, natural admissible heuristics tend to be consistent

� Remember, costs are always positive in search!

What is Search For?

� Models of the world: single agents, deterministic actions,

fully observed state, discrete state space

� Planning: sequences of actions

� The path to the goal is the important thing

� Paths have various costs, depths

� Heuristics to guide, fringe to keep backups

� Identification: assignments to variables

� The goal itself is important, not the path

� All paths at the same depth (for some formulations)

� CSPs are specialized for identification problems
19

9

Constraint Satisfaction Problems

� Standard search problems:
� State is a “black box”: arbitrary data structure

� Goal test: any function over states

� Successor function can be anything

� Constraint satisfaction problems (CSPs):
� A special subset of search problems

� State is defined by variables X
i

with values from a
domain D (sometimes D depends on i)

� Goal test is a set of constraints specifying
allowable combinations of values for subsets of
variables

� Simple example of a formal representation
language

� Allows useful general-purpose algorithms with
more power than standard search algorithms 20

Example: N-Queens

� Formulation 1:

� Variables:

� Domains:

� Constraints

21

10

Example: N-Queens

� Formulation 2:

� Variables:

� Domains:

� Constraints:

Implicit:

Explicit:

-or-

Example: Map-Coloring

� Variables:

� Domain:

� Constraints: adjacent regions must have
different colors

� Solutions are assignments satisfying all
constraints, e.g.:

24

11

Constraint Graphs

� Binary CSP: each constraint
relates (at most) two variables

� Binary constraint graph: nodes
are variables, arcs show
constraints

� General-purpose CSP
algorithms use the graph
structure to speed up search.
E.g., Tasmania is an
independent subproblem!

25

Example: Cryptarithmetic

� Variables (circles):

� Domains:

� Constraints (boxes):

26

12

Example: Sudoku

� Variables:

� Each (open) square

� Domains:

� {1,2,…,9}

� Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

Example: The Waltz Algorithm

� The Waltz algorithm is for interpreting line drawings of
solid polyhedra

� An early example of a computation posed as a CSP

� Look at all intersections

� Adjacent intersections impose constraints on each other

?

28

13

Varieties of CSPs

� Discrete Variables
� Finite domains

� Size d means O(dn) complete assignments

� E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

� Infinite domains (integers, strings, etc.)

� E.g., job scheduling, variables are start/end times for each job

� Linear constraints solvable, nonlinear undecidable

� Continuous variables
� E.g., start-end state of a robot

� Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

32

Varieties of Constraints

� Varieties of Constraints
� Unary constraints involve a single variable (equiv. to shrinking domains):

� Binary constraints involve pairs of variables:

� Higher-order constraints involve 3 or more variables:

e.g., cryptarithmetic column constraints

� Preferences (soft constraints):
� E.g., red is better than green

� Often representable by a cost for each variable assignment

� Gives constrained optimization problems

� (We’ll ignore these until we get to Bayes’ nets)

33

14

Real-World CSPs

� Assignment problems: e.g., who teaches what class

� Timetabling problems: e.g., which class is offered when
and where?

� Hardware configuration

� Transportation scheduling

� Factory scheduling

� Floorplanning

� Fault diagnosis

� … lots more!

� Many real-world problems involve real-valued
variables…

34

Standard Search Formulation

� Standard search formulation of CSPs (incremental)

� Let's start with the straightforward, dumb approach, then
fix it

� States are defined by the values assigned so far
� Initial state: the empty assignment, {}

� Successor function: assign a value to an unassigned variable

� Goal test: the current assignment is complete and satisfies all
constraints

� Simplest CSP ever: two bits, constrained to be equal

35

15

Search Methods

� What does BFS do?

� What does DFS do?

� What’s the obvious problem here?

� What’s the slightly-less-obvious problem?

37

Backtracking Search

� Idea 1: Only consider a single variable at each point
� Variable assignments are commutative, so fix ordering

� I.e., [WA = red then NT = green] same as [NT = green then WA = red]

� Only need to consider assignments to a single variable at each step

� How many leaves are there?

� Idea 2: Only allow legal assignments at each point
� I.e. consider only values which do not conflict previous assignments

� Might have to do some computation to figure out whether a value is ok

� “Incremental goal test”

� Depth-first search for CSPs with these two improvements is called
backtracking search (useless name, really)

� Backtracking search is the basic uninformed algorithm for CSPs

� Can solve n-queens for n ≈ 25
39

16

Backtracking Search

� What are the choice points?
41

Backtracking Example

42

17

Improving Backtracking

� General-purpose ideas can give huge gains in
speed:

� Which variable should be assigned next?

� In what order should its values be tried?

� Can we detect inevitable failure early?

� Can we take advantage of problem structure?

43

18

Minimum Remaining Values

� Minimum remaining values (MRV):

� Choose the variable with the fewest legal values

� Why min rather than max?

� Also called “most constrained variable”

� “Fail-fast” ordering
45

Degree Heuristic

� Tie-breaker among MRV variables

� Degree heuristic:
� Choose the variable participating in the most

constraints on remaining variables

� Why most rather than fewest constraints?
46

19

Least Constraining Value

� Given a choice of variable:
� Choose the least constraining

value

� The one that rules out the fewest
values in the remaining variables

� Note that it may take some
computation to determine this!

� Why least rather than most?

� Combining these heuristics
makes 1000 queens feasible

47

Forward Checking

� Idea: Keep track of remaining legal values for

unassigned variables (using immediate constraints)

� Idea: Terminate when any variable has no legal values

WA
SA

NT Q

NSW

V

48

[demo: forward checking animation]

20

Constraint Propagation

� Forward checking propagates information from assigned to adjacent
unassigned variables, but doesn't detect more distant failures:

� NT and SA cannot both be blue!

� Why didn’t we detect this yet?

� Constraint propagation repeatedly enforces constraints (locally)

WA
SA

NT Q

NSW

V

49

Arc Consistency

� Simplest form of propagation makes each arc consistent
� X → Y is consistent iff for every value x there is some allowed y

WA
SA

NT Q

NSW

V

50

• If X loses a value, neighbors of X need to be rechecked!

• Arc consistency detects failure earlier than forward checking

• What’s the downside of arc consistency?

• Can be run as a preprocessor or after each assignment

21

Arc Consistency

� Runtime: O(n2d3), can be reduced to O(n2d2)

� … but detecting all possible future problems is NP-hard – why?
51

[demo: arc consistency animation]

Limitations of Arc Consistency

� After running arc
consistency:

� Can have one solution left

� Can have multiple

solutions left

� Can have no solutions left

(and not know it)

22

Demo: Backtracking + AC

23

Problem Structure

� Tasmania and mainland are
independent subproblems

� Identifiable as connected
components of constraint graph

� Suppose each subproblem has c
variables out of n total

� Worst-case solution cost is
O((n/c)(dc)), linear in n
� E.g., n = 80, d = 2, c =20

� 280 = 4 billion years at 10 million
nodes/sec

� (4)(220) = 0.4 seconds at 10 million
nodes/sec

55

Tree-Structured CSPs

� Choose a variable as root, order

variables from root to leaves such

that every node's parent precedes

it in the ordering

� For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)

� For i = 1 : n, assign Xi consistently with Parent(Xi)

� Runtime: O(n d2)
56

24

Tree-Structured CSPs

� Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time!
� Compare to general CSPs, where worst-case time is O(dn)

� This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and
the complexity of reasoning.

57

Nearly Tree-Structured CSPs

� Conditioning: instantiate a variable, prune its neighbors' domains

� Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

� Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c
58

25

Iterative Algorithms for CSPs

� Greedy and local methods typically work with “complete”
states, i.e., all variables assigned

� To apply to CSPs:
� Allow states with unsatisfied constraints

� Operators reassign variable values

� Variable selection: randomly select any conflicted
variable

� Value selection by min-conflicts heuristic:
� Choose value that violates the fewest constraints

� I.e., hill climb with h(n) = total number of violated constraints

59

Example: 4-Queens

� States: 4 queens in 4 columns (44 = 256 states)

� Operators: move queen in column

� Goal test: no attacks

� Evaluation: h(n) = number of attacks

60

26

Performance of Min-Conflicts

� Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

� The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

61

Summary

� CSPs are a special kind of search problem:
� States defined by values of a fixed set of variables

� Goal test defined by constraints on variable values

� Backtracking = depth-first search with one legal variable assigned per node

� Variable ordering and value selection heuristics help significantly

� Forward checking prevents assignments that guarantee later failure

� Constraint propagation (e.g., arc consistency) does additional work to constrain
values and detect inconsistencies

� The constraint graph representation allows analysis of problem structure

� Tree-structured CSPs can be solved in linear time

� Iterative min-conflicts is usually effective in practice

62

27

Local Search Methods

� Queue-based algorithms keep fallback

options (backtracking)

� Local search: improve what you have until

you can’t make it better

� Generally much more efficient (but

incomplete)

63

Types of Problems

� Planning problems:
� We want a path to a solution

(examples?)

� Usually want an optimal path

� Incremental formulations

� Identification problems:
� We actually just want to know what

the goal is (examples?)

� Usually want an optimal goal

� Complete-state formulations

� Iterative improvement algorithms

64

28

Hill Climbing

� Simple, general idea:
� Start wherever

� Always choose the best neighbor

� If no neighbors have better scores than
current, quit

� Why can this be a terrible idea?
� Complete?

� Optimal?

� What’s good about it?
65

Hill Climbing Diagram

� Random restarts?

� Random sideways steps? 66

29

Simulated Annealing

� Idea: Escape local maxima by allowing downhill moves

� But make them rarer as time goes on

67

Simulated Annealing

� Theoretical guarantee:

� If T decreased slowly enough,

will converge to optimal state!

� Is this an interesting guarantee?

� Sounds like magic, but reality is reality:
� The more downhill steps you need to escape, the less

likely you are to every make them all in a row

� People think hard about ridge operators which let you
jump around the space in better ways

68

30

Beam Search

� Like greedy search, but keep K states at all
times:

� Variables: beam size, encourage diversity?
� The best choice in MANY practical settings
� Complete? Optimal?
� What criteria to order nodes by?

Greedy Search Beam Search

69

