CS 188: Atrtificial Intelligence
Spring 2010

Lecture 4: A* wrap-up + Constraint
Satisfaction

1/28/2010

Pieter Abbeel — UC Berkeley

Many slides from Dan Klein

Announcements

Project 0 (Python tutorial) is due today :23::5‘3

= |If you don’t have a class account yet, pick one up
after lecture

Written 1 (Search) is due today
283-Soda

Project 1 (Search) is out and due next week
Thursday

—>= Section/Lecture

Recap: Search

—=> Search problem:
= States (configurations of the world)

= Successor function: a function from states to
lists of (state, action, cost) triples; drawn as a graph

» Start state and goal test
7

General Tree Search

function TrEE-SEARCH(problem, stretegy) returns a solution, or failure
initialize the search tree using the initial state of problem G
loop do
if there are no candidates for expansion then return failure <3—
choese a leaf node for expansion zccording to stralegy
—=if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes tc the search tree

end
~
» |mportant ideas:
» Fringe Detailed pseudocode
= Expansion is in the book!

= Exploration strategy.s

= Main question: which fringe nodes to explore? <

A* Review

= A* uses both backward costs g and
forward estimate h: f(n) = g(n) + h(n)

| e— e

= A* tree search is optimal with admissible
heuristics (optimistic future cost estimates)

= Heuristic design is key: relaxed problems]
can help

Admissible Heuristics

= A heuristic i is admissible (optimistic) if:

Lh(n) < h* (n))

where h*(n) is the true cost to a nearest goal

Q—

= Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

Optimality of A*: Blocking
Notation: ’gﬁ//‘
v

= g(n) = cost to node n W

_

= h(n) = estimated cost from n

to the nearest goal (heuristic)

= f(n)=g(n) + h(n) =
estimated total cost via n

= G*: alowest cost goal node

G: another goal node

Optimality of A*: Blocking

Proof:
= What could go wrong?

= We’d have to have to pop a
suboptimal goal G off the
fringe before G*

= This can’t happen:

* Imagine a suboptimal
goal G is on the queue g :)g’(‘?@(ﬁ«@&m
= Some node nwhich is a < 9(G7)

subpath of G* must also g(G*)&% 9

be on the fringe (why?))' — \))
= nwill be popped before G ‘F/ %ﬁ%) Tg

Tree Search: Extra Work!

» Failure to detect repeated states can cause

exponentially more work. Why?

geauch gL
A @

O m
Yala
NVANDY
m
(o]
&
RV
s [
::::;Q\ /

o

RYERY

/
\
b

WAA
&
Qg

Graph Search

= Very simple fix: never expand a state twice W

a n empty set

— fringe — INSERT(MAKE-NODE(INITIAL-STATE problem]), fringe)
loop do
—if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GoaL-TesT(problen, STATE|node]|) then retun@
if STATE[nede] is not in closed then
add STATE[nod| to closed
fringe — INSERTALL{ EXPAND(rode, problem), fringe)

é?/

2110

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

=

o

= Can this wreck completeness? Optimality?

Optimality of A* Graph Search

Proof:

= New possible problem: nodes on path to
G* that would have been in queue aren't,
because some worse n’for the same
state as some nwas dequeued and
expanded first (disaster!)

= Take the highest such nin tree

= letpbe the ancestor which was on the

(?\—& Wl 95

<%w\<£§

Consistency

= Wait, how do we know parents have better f-values than
their successors?

= Couldn’t we pop some node n, and find its Chl|d n’to
have lower f value?

= YES: %Lp\\:ko.\f\o Z‘/
=2,
g= 10
~7 N =

h=10
= What can we require to prevent these inversions?

= Consistency: c¢(n,a,n’) > h(n) — h(n')

= Real cost must always exceed reduction in heuristic

A* Graph Search Gone Wrong

State space graph Search tree
S (O+2)

A (1+4) %“" 1+1

Eﬁ,ﬁ{ © 6+

Cis already in
the closed-list,

hence not G @)
placed in the
priority queue

Consistency

The story on Consistency: M\Qﬂj
h=1 | Definition: A/ pa
cost(Ato C) + h(G) 2
» Consequence in search tree:
Two nodes along a path: Ny Ng
—g(Nc) = a(N,) + co)
| 9(Nc) + h(C) 2g(Na) + h(A)| @

* The f value along a path never
decreases

4

* Non-decreasing f means you’re
‘2(‘%« ?ptxmal to every state (not just goals)
9—

Optimality Summary

= Tree search:
= A* optimal if heuristic is admissible (and non-negative)
= Uniform Cost Search is a special case (h = 0)

= Graph search:
= A* optimal if heuristic is consistent G—
= UCS optimal (h = 0 is consistent)

= Consistency implies admissibility

= Challenge:Try to prove this. =g @/
= Hint: try to prove the equivalent statement not admissible implies not
consistent - S

= In general, natural admissible heuristics tend to be consistent @—

= Remember, costs are always positive in search!@—
pdeahiilondod Al vty

What is Search For?

» Models of the world: single agents, deterministic actions,
fully observed state, discrete state space <—

= Planning: sequences of actions <¢—
= The path to the goal is the important thing
= Paths have various costs, depths
= Heuristics to guide, fringe to keep backups

= |dentification: assignments to variables
= The goal itself is important, not the path

= All paths at the same depth (for some formulations)
= @are specialized for identification problems

Constraint Satisfaction Problems

= Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test: any function over states
= Successor function can be anything

= Constraint satisfaction problems (CSPs):
= A special subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying
, allowable combinations of values for subsets of
(. variables

= Simple example of a formal representation
language

= Allows useful general-purpose algorithms with
more power than standard search algorithms 20

= Formulation 1:
[-\ Variables: @ %L‘\
» Domains: %_
= Constraints
P i,k (X Xgg) € {(0,0),(0,1), (1,00} D] ||
\Ac)w_ﬁf’ Vi, 7, k (Xija Xi-l—k:,j-l—k:) € {(Oa 0)7 (Oa 1)7 (1a O)}
&\CC (}\‘_O_?/) Vi, g, k (Xl]a Xz+k,j—k;) € {(O’ 0)7 (0) 1)) (1> O)} Al

2 Xij=N
2,7

21

Example: N-Queens

= Formulation 2: Q1)
= Variables: Qx Q@2
& Q3

» Domains: {1,2,3,...N} @a

= Constraints:

Implicit: Vi,j non-threatening(Q;, Qj)%—
or

Explicit: (Ql’Q2) € {(1>3)a (1>4)a . } ~—

Example: Map-Coloring

= Variables: WA, NT, Q, NSW, V, SA, T
= Domain: D = {red, green, blue}

= Constraints: adjacent regions must have
different colors

WA# NT
(WA,NT) € {(red, green), (red, blue), (green,red), ...}

= Solutions are assignments satisfying alll
constraints, e.g.:

{WA =red, NT = green,Q = red,
NSW = green,V = red, SA = blue, T = green}

Tasm'iz

=L

24

10

Constraint Graphs

= Binary CSP: each constraint
relates (at most) two variables @

= Binary constraint graph: nodes @ "

are variables, arcs show @
constraints

= General-purpose CSP
algorithms use the graph
structure to speed up search.
E.g., Tasmaniais an
independent subproblem!

Example: Cryptarithmetic

= Variables (circles):
FTUWRO X X5 X3 +

= Domains: F
{0,1,2,3,4,5,6,7,8,9}

= Constraints (boxes):
alldiff(F, T, U, W, R, O)

O+0=R+10-X;

26

11

Example: Sudoku

s N7, = Variables:
= Each (open) square
8|4 16 o
5 1 = Domains:
=T 1308 S = {1,2,...,9}
6 3 % 3 :l = Constraints:
- 915 1 9-way alldiff for each column
i 2 .
718 216 9-way alldiff for each row
2 3 / 9-way alldiff for each region

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting line drawings of
solid polyhedra

= An early example of a computation posed as a CSP

)\ ?
= | ook at all intersections

= Adjacent intersections impose constraints on each other
28

12

Varieties of CSPs

Discrete Variables
= Finite domains

= Size d means O(d") complete assignments
= E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

= Infinite domains (integers, strings, etc.)

= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

Continuous variables
= E.g., start-end state of a robot
= Linear constraints solvable in polynomial time by LP methods

(see cs170 for a bit of this theory)

32

Varieties of Constraints

Varieties of Constraints

Unary constraints involve a single variable (equiv. to shrinking domains):

SA # green
Binary constraints involve pairs of variables:

SA#£WA

Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Preferences (soft constraints):

E.g., red is better than green

= Often representable by a cost for each variable assignment

Gives constrained optimization problems
(We’'llignore these until we get to Bayes’ nets)

33

13

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when
and where?

Hardware configuration
Transportation scheduling
Factory scheduling
Floorplanning

Fault diagnosis

... lots more!

Many real-world problems involve real-valued

variables...
34

Standard Search Formulation

Standard search formulation of CSPs (incremental)

][_et's start with the straightforward, dumb approach, then
ix it

States are defined by the values assigned so far
= Initial state: the empty assignment, {}
= Successor function: assign a value to an unassigned variable

= Goal test: the current assignment is complete and satisfies all
constraints

Simplest CSP ever: two bits, constrained to be equal

35

14

Search Methods

= What does BFS do?
—
cQPs

= What does DFS do? @‘0@

®

= What'’s the obvious problem here?
= What's the slightly-less-obvious problem?

Backtracking Search

= |dea 1: Only consider a single variable at each point
= Variable assignments are commutative, so fix ordering
= |.e.,[WA=redthen NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step
= How many leaves are there?

= |dea 2: Only allow legal assignments at each point
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to figure out whether a value is ok
= “Incremental goal test”

= Depth-first search for CSPs with these two improvements is called
backtracking search (useless name, really)

= Backtracking search is the basic uninformed algorithm for CSPs

39
= (Can solve n-queens for n = 25

15

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE- BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARTABLE(VARIABLES|csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if walue is consistent with assignment given CONSTRAINTS[csp] then
add {var = valuc} to assignment
result «<— RECURSIVE- BACKTRACKING(assignment, csp)
if resull # Jailure then return resull
remove {var = value} from assignment
return failure

= What are the choice points?

Backtracking Example
S
— T
o & 5
A
- <~
A
<

16

Improving Backtracking

= General-purpose ideas can give huge gains in
speed:
= Which variable should be assigned next?
» In what order should its values be tried?
= Can we detect inevitable failure early?
= Can we take advantage of problem structure?

43

17

Minimum Remaining Values

= Minimum remaining values (MRV):
= Choose the variable with the fewest legal values

SSEs SThs STae Lt

= Why min rather than max?
= Also called “most constrained variable”
» “Fail-fast” ordering

45

Degree Heuristic

= Tie-breaker among MRV variables

= Degree heuristic:

= Choose the variable participating in the most
constraints on remaining variables

SRR

= Why most rather than fewest constraints?
46

Least Constraining Value

= Given a choice of variable:
= Choose the least constraining

value

= The one that rules out the fewest ‘. ‘
values in the remaining variables

= Note that it may take some .
computation to determine this! ‘. ‘

»= Why least rather than most?

TF

= Combining these heuristics
makes 1000 queens feasible

47

NT| q

Forward Checking ("=

= |dea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

= |dea: Terminate when any variable has no legal values

SN

WA NT Q NSW \" SA T

48
[demo: forward checking animation]

19

NT| Q

: . l
Constraint Propagation "=

= Forward checking propagates information from assigned to adjacent
unassigned variables, but doesn't detect more distant failures:

SSEN SSE S

WA NT Q NSW \" SA T
I I I I i i
(] PEjErE[EeE[EeE] PE[Ee]
1 E[ae E[mrn] H[E P E]

= NT and SA cannot both be blue!

= Why didn’t we detect this yet?
= Constraint propagation repeatedly enforces constraints (locally)

49

Arc Consistency (s

\"

= Simplest form of propagation makes each arc consistent
= X — Y is consistent iff for every value x there is some allowed y

SIS S

WA NT Q NSW \' SA T

—

« If X loses a value, neighbors of X need to be rechecked!

* Arc consistency detects failure earlier than forward checking

» What's the downside of arc consistency?

» Can be run as a preprocessor or after each assignment 50

20

Arc Consistency

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;. X, X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT- VALUES(X;, X;) then
for each X, in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed «— false
for each z in DoMAIN[X]] do
if no value y in DOMAIN[X] allows (z,y) to satisfy the constraint X; — X
then delete © from DOMAIN[X}]; removed — true
return removed

* Runtime: O(n2d3), can be reduced to O(n2d?2)

= ... but detecting all possible future problems is NP-hard — why?
51
[demo: arc consistency animation]

Limitations of Arc Consistency

= After running arc
consistency:

= Can have one solution left O
= Can have multiple
solutions left

= Can have no solutions left ¢ 0

(and not know it)
C L)
we s

21

Demo: Backtracking + AC

22

Problem Structure

Tasmania and mainland are @

independent subproblems ‘
|dentifiable as connected @

L

components of constraint graph @‘@

Suppose each subproblem has ¢ °
variables out of n total
Worst-case solution cost is @

O((n/c)(d®)), linear in n
= Eg.,n=80,d=2,c=20
= 280 = 4 pillion years at 10 million
nodes/sec

= (4)(22°) = 0.4 seconds at 10 million
nodes/sec

Tree-Structured CSPs

Choose a variable as root, order e
variables from root to leaves such

that every node's parent precedes 9 Q
it in the ordering

Fori=n:2, apply Removelnconsistent(Parent(X),X)
Fori=1:n, assign X; consistently with Parent(X)

Runtime: O(n d?)

23

Tree-Structured CSPs

Al E)
8)—(0]
©)

= Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d?) time!

= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to logical and probabilistic reasoning: an
important example of the relation between syntactic restrictions and
the complexity of reasoning.

57

Nearly Tree-Structured CSPs

@\/’Z‘\

@) “ o
&=

O

©

©

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

= Cutset size ¢ gives runtime O((d°) (n-c) d?), very fast for small ¢ 53

24

lterative Algorithms for CSPs

Greedy and local methods typically work with “complete”
states, i.e., all variables assigned

To apply to CSPs:
= Allow states with unsatisfied constraints
= Operators reassign variable values

Variable selection: randomly select any conflicted
variable

Value selection by min-conflicts heuristic:
= Choose value that violates the fewest constraints
= |.e,, hill climb with h(n) = total number of violated constraints

59

Example: 4-Queens

o=
-

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

=0

60

25

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

= The same appears to be true for any randomly-generated CSP
exceptin a narrow range of the ratio

__number of constraints
"~ number of variables

I}

CPU
time |

l—//_‘R

T
critical
ratio 61

Summary

= CSPs are a special kind of search problem:
= States defined by values of a fixed set of variables
= Goal test defined by constraints on variable values

= Backtracking = depth-first search with one legal variable assigned per node
= Variable ordering and value selection heuristics help significantly
= Forward checking prevents assignments that guarantee later failure

= Constraint propagation (e.g., arc consistency) does additional work to constrain
values and detect inconsistencies

= The constraint graph representation allows analysis of problem structure
= Tree-structured CSPs can be solved in linear time

= |terative min-conflicts is usually effective in practice

62

26

Local Search Methods

= Queue-based algorithms keep fallback
options (backtracking)

= Local search: improve what you have until
you can’t make it better

= Generally much more efficient (but
incomplete)

63

Types of Problems

= Planning problems:

= We want a path to a solution
(examples?) —

= Usually want an optimal path

» Incremental formulations

= |dentification problems:

» We actually just want to know what
the goal is (examples?)

= Usually want an optimal goal
= Complete-state formulations
= [terative improvement algorithms

64

27

Hill Climbing

= Simple, general idea:
= Start wherever
= Always choose the best neighbor

= |[f no neighbors have better scores than
current, quit

= Why can this be a terrible idea?
= Complete?
= Optimal?

= What's good about it?

Hill Climbing Diagram

Obiecti\ e function /global maximum

shoulder

local maximum

"flat" local maximum

current
state

= Random restarts?
» Random sideways steps?

»state space

28

Simulated Annealing

» |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a "temperature” controlling prob. of downward steps
current < MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do
T schedule]
if 7'= 0 then return current
next < a randomly selected successor of current
AE« VALUE[next] — VALUE[current]
if AE > 0 then current«— neat

else current — next only with probability ¢® £/7 67

Simulated Annealing

= Theoretical guarantee:

= |f T decreased slowly enough,
will converge to optimal state!

= |s this an interesting guarantee?

= Sounds like magic, but reality is reality:

» The more downhill steps you need to escape, the less
likely you are to every make them all in a row

= People think hard about ridge operators which let you
jump around the space in better ways

68

29

Beam Search

Like greedy search, but keep K states at all
times:

O’s‘\ <~ DeY
VRS SO~ INES
N N N
“O “O

&Ed

Greedy Search Beam Search

Variables: beam size, encourage diversity?
The best choice in MANY practical settings
Complete? Optimal?

What criteria to order nodes by?

69

30

